Ultra-Low Energy Wireless Sensor Networks in Practice
Tampere University of Technology (TUT)

- Established in 1965
- 12,200 students (2007)
DACI research group

Department of Computer Systems
Faculty of Computing and Electrical Engineering

- Prof. Marko Hännikäinen, Prof. Timo D. Hämäläinen,
 - Personnel ca. 30: researchers (PhD students) and research assistants (MSc students)

- Competence
 - Wireless Sensor Networks
 - Wireless LANs
 - Web applications and services
 - Multi-processor embedded system design methods

- Outcome 1997-2008
 - 200+ international publications
 - 8 PhD theses, 50+ MSc theses

- Major funding from subcontracted industry projects
WSN research efforts by DACI

- Large national industry and public funded projects 2000-2008
 - 50 PY (researchers and research assistants) + supervision
- Currently 10+ persons involved in WSN research
Introduction to WSNs

Ultra-Low Energy Wireless Sensor Networks in Practice
Low-Energy Wireless Sensor Networks (1/2)

- WSN is a new topic in research and development as the term is used today.
- WSN consists of a large number of nodes that organise autonomously.
- WSN nodes are resource constrained (limited computing, communication, and energy).
- WSN targets at low price, small size with high embedding.
Low-Energy Wireless Sensor Networks (2/2)

- WSN applications are versatile
 - Measure environment
 - Control other systems
 - Identify, locate persons and assets
 - Transfer, save, and refine information

- Main emerging standards are ZigBee (IEEE 802.15.4), (Ultra Low Power) Bluetooth, WirelessHart, 6LoWPAN, RFIDs, TinyOS, and Prorietary
IEEE articles containing "Wireless Sensor Network"

Comparison: 2006
- Processor architecture: 100
- Internet protocol: 221
- Optimization algorithm: 469
- Wireless network: 1694

JulkaisuJa/kpl

IEEE

Hannikainen

IEEE

N

Hannikainen

2

4

5

1

0

500

1000

1500

2000

2500

(C) DACI Research Group - www.tkt.cs.tut.fi/research/daci/
Ultra-Low Energy Wireless Sensor Networks in Practice
Low-Energy WSNs in Practice

1. WSN technology
 - Getting the core technology working

2. Design tools and infrastructure integration
 - Integration and extending exiting systems
 - Tools for design, simulation, diagnostics

3. Applications
 - What can be done/should be done with WSNs?
Ultra-Low Energy Wireless Sensor Networks in Practice

WSN Technology
Building of a wireless sensor node

- Wired starting point

Physical sensors and interfaces

wire
Building of a wireless sensor node

1. Wireless temperature sensor
Building of a wireless sensor node (2)

- Ad-hoc mesh protocols
- Multi-hop routing
Building of a wireless sensor node (3)

- Embedded applications
 - Measuring
 - Data processing (filtering, aggregating, compressing, ...)
 - Storing
 - Actuating
Building of a wireless sensor node (4)

- Gateways to auxiliary hosts & networks
- Interface to any new sensor element
- Energy sources
TUTWSN node

- Node is an embedded system running protocols and several applications
 - Senses environment or controls other devices
- Different types and number of physical sensor attached to a node
 - e.g. IR and piezo (motion detection), G-3D sensor, humidity, temperature, GPS, luminance, CO2, magnetic, compass
- Interfaces for RS232, I/O, Ethernet (TCP/IP), GPRS
- TUTWSN is optimised for low power consumption - lifetime up to years with AA-batteries
TUTWSN research in brief

- Dynamic autonomous mesh networking and data centric routing
- TUTWSN research is not a single network – a family of platforms and protocols in modular HW/SW components
- Implementable with commercial off-the-shelf components
TUTWSN main features

- Energy efficiency also in router nodes
- Mutual mobility of nodes (fast neighbour discovery and re-routing)
- Several gateways to/from other networks
- Network is programmable and firmware can be updated on-the-field
- Used in real application deployments
TUTWSN hardware example

- Does not place extensive functional and non-functional requirements on HW
- The features are achieved by algorithms
TUTWSN nodes

2.4 GHz TUTWSN
- Hop distance 100–300m
- Avg. Power 150-500 uW
- Sampling interval 30s–10 min
- Lifetime up to 2 years (2xAA)

433 MHz TUTWSN
- Hop distance 0.5 – 2 km
- Avg. Power 2 mW
- Sampling interval 30s – 10 min
- Lifetime up to 1 year (2xAA)
Ultra-Low Energy Wireless Sensor Networks in Practice

Tools and infrastructure integration
TUTWSN infrastructure

TUTWSN application server

Customer application servers

3rd party service integration (e.g. Google)

Internet Delivery

Java Messaging Service

XML messaging (SOAP)

TCP/IP sockets

Gateway Software (WSN & IP Proxy)

SQL/ODBC

DB

JMS

XML

TUTWSN nodes

TUTWSN ethernet gateway

TCP/IP

GPRS gateway

Customer application servers

TUTWSN nodes

TUTWSN ethernet gateway

TCP/IP

GPRS gateway

(C) DACI Research Group - www.cs.tut.fi/research/daci/
Web Applications
Application control

Select services

Measurement services

- Multisensor services
 - Humidity
 - Illuminance
 - Acceleration
 - Compass
- Temperature
- Humidity
- Illuminance
- Acceleration
- Compass
- GPS
 - Basic data collection
 - Extended data collection
- Motion detection
- Carbon dioxide

Other services

- Location receiver
- Global time
- Diagnostics
 - Generic node information (buffering, voltage, events)
 - Neighbors
 - Received cluster traffic
 - Transmitted traffic
- Network information
 - Routes
 - Neighbors
- Network delays

How often

Options

30 seconds

(C) DACI Research Group - www.tkt.cs.tut.fi/research/daci/
Design tools and simulations

\[P_m = \frac{P_{RX}}{T_s} \left(T_{st} + \frac{1}{f_{btx}} \right) + E_{tx} f_{btx} + E_{rx} f_{brx} \]

Theoretical models

Simulations

Database

Physical Deployment

Diagnostics

(C) DACI Research Group - www.tkt.cs.tut.fi/research/daci/
Examples of realtime diagnostics
Voltage / 5 days
Single hop TX reliability (node to node)
RF channel and TDMA slot scheduling
Ultra-Low Energy Wireless Sensor Networks in Practice

Applications
Applications areas and drivers

- **WSN optimises** current processes and enables new potential applications
- Energy saving by the green movement
 - From personal level to city-wide WSNs
- Security
 - Personal security, asset management, security enhancing information
- Fault and condition monitoring
 - Home & industry
- Environment monitoring
 - Safe living surroundings, urban air quality
TUTWSN application deployments

- Monitoring applications
 - Indoors & outdoors

- Tracking applications
 - Person and asset tracking
Frost and snow temp monitoring

- Finnish Lapland, 07-08
- Utilized by the Finnish Meteorological Institute’s Research Centre to verify satellite measurements
- WSN monitors
 - frost depth
 - snow depth
 - air, soil and tree trunks temperatures
Ultra-Low Energy Wireless Sensor Networks in Practice

Example: TUTWSN at home
“20 minute” home WSN

• According to OnWorld, WSNs reduce installation costs by up to 80%
• No dust, paint, wires, waiting
Ethernet Gateway Node

- Casing holder
- Pushbutton
- Red led
- Green led
- AC connector
- Ethernet port
Ethernet Gateway attached to ADSL modem
Online web services
Example

Multipoint temperature inside fridge
Example
Conclusions and future work
Challenges in WSN research and adoption

- Two fields of engineering: computers and communications
- Piece-wise solutions, lack of common interfaces
- Lack of killer application & strong belief in killer application
- Strong belief in the near future standard
Cross-layer design

- Design time tailoring
- Runtime configuration
- Runtime adaptation

Temperature monitoring network

- Delay
- Mobility
- Throughput
- Security
- Energy
- Autonomy
- Reactivity
- Scalability
- Availability

(C) DACI Research Group - www.tkt.cs.tut.fi/research/daci/
Key topics for future research work

- Methods and tools for managing the WSN design space
 - Increased abstraction for efficient integration
 - Cross-layer design tools

- Architectural compatibility
 - TCP/IP, XML, Web, SOA/SOAP, Java, Mobile
 - “Realistic” APIs

- Physical deployments and piloting
 - Required for technological development and user acceptance
Conclusions summary

- Moving from the potential enabling technology phase into efficient adoption of the technology
- Not the standard – the efficient utilization of standard components
- Integration of WSN just in case for various purposes – without single killer application?
- TUTWSN is available for co-operation research projects